

Mark Scheme (Results)

October 2021

Pearson Edexcel International A Level In Statistics S1 (WST01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

October 2021
Question Paper Log Number P71284A
Publications Code WST01_01_2110_MS
All the material in this publication is copyright
© Pearson Education Ltd 2021

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

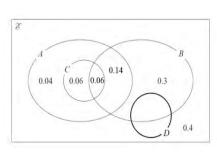
PEARSON EDEXCEL IAL MATHEMATICS

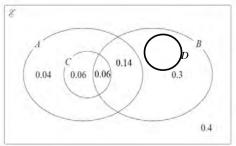
General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless
 otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.


- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{will}}$ be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark


- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

Special notes for marking Statistics exams (for AAs only)

- If a method leads to "probabilities" which are greater than 1 or less than 0 then M0 should be awarded unless the mark scheme specifies otherwise.
- Any correct method should gain credit. If you cannot see how to apply the mark scheme but believe the method to be correct then please send to review.
- For method marks, we generally allow or condone a slip or transcription error if these are seen in an expression. We do not, however, condone or allow these errors in accuracy marks.
- If a candidate is "hedging their bets" e.g. give Attempt 1...Attempt 2...etc then please send to review.

Question	Scheme	Marks
Number 1 (a)	[Sum of probs = 1 gives $p + q = 0.2$ and] so $P(B) = 0.5$	B1
1 (a)	[Sam of problem 1] grees p + q = 0.2 and for fine for five p + q = 0.2 and for five p + q = 0.2 and for five for five p + q = 0.2 and for five fo	(1)
(b)	e.g. $P(A) = 0.3$ or $0.1 +$ "their value for $p + q$ ", $P(A \cap B) = 0.2$ or "their value for	
	, , ,	M1
	$p + q$ ", and $[P(A) \times P(B) =]0.3 \times "0.5" [="0.15"]$	
	$0.15 \neq 0.2$ so [A and B are] not independent	A1
		(2)
(c)	$[P(C \mid B) =] \frac{p}{"0.5"} = p + 0.06 \text{ (o.e.)}$	M1
	[2p = p + 0.06 so] $p = 0.06$	A1
	[Use of $p + q = 0.2$ gives] $q = 0.14$	A1
(-		(3)
(d)	Suitable event D drawn. [See Venn diagrams below]	B1 (1)
		[7]
	Notes	
(a)	B1 for 0.5 or exact equivalent	
(b)	M1 for sight of correct probabilities for P(A) and P($A \cap B$) clearly labelled, 0.3×0.5	" seen or
	$P(A) \times P(B) = 0.15$	
	Allow $0.04 + 0.06 + 0.2$ for P(A) if clearly labelled	
	$P(A \cap B)$ may be stated in part (a) $P(B)$ can ft from (a) eg $P(A) = "0.5" - 0.3-0.2$	
ALT May see $P(B \mid A) = \frac{2}{3}$ and compared with $P(B)$ or $P(A \mid B) = 0.4$ and $P(A) = 0.4$		
	A1 For all the correct probabilities and calculations, a comparison and correct conclusion.	We need
	to see 0.15 but will accept $P(A \cap B) \neq P(A) \times P(B)$ instead of 0.15 \neq 0.2 for comp	parison
	SC Allow M1A0for $P(A) = 0.1 + p + q$; $P(A \cap B) = p + q$ clearly labelled and	
	$0.5 \times (0.1 + p + q)$ or $(p + q + 0.3)(0.1 + p + q)$ given.	
	MIS 4 : PODS	. NID
(c)	M1 ft their P(B) from part (a). For a correct equation in p or q based on the given statemen $0.2-a$	t. NB
	equation in terms of q is $\frac{0.2-q}{"0.5"} = 0.26-q$ (o.e.) Allow $\frac{p}{0.3+p+q} = p+0.06$	
	$1^{\text{st}} \text{ A1 } \text{ for } (p =) 0.06$	
Ans only	$2^{\text{nd}} \text{ A1 for } (q =) 0.14$ (p =) 0.06 and (q =) 0.14 3/3	
Ans only (d)	B1 for a suitable event D drawn that has an intersection with B but not with A. Condone if	not
. ,	labelled D	

Question Number	Scheme	Marks
2 (a)	$\left[S_{xp} = \right] 2347 - \frac{93 \times 273}{12}$ or $2347 - \frac{25389}{12} \left[= 231.25 \right]$ (*)	B1cso
		(1)
(b)	$\left[\mathbf{S}_{pp} = \right] 6602.72 - \frac{273^2}{12} = \left[391.97\right]$	M1
	$[r=]\frac{231.25}{\sqrt{148.25 \times "391.97"}}$	M1
	= 0.959307 awrt 0.959	A1 (3)
(c)	$b = \frac{S_{xp}}{S_{xx}} = \frac{231.25}{148.25} [= 1.559865]$	M1
	$a = \frac{273}{12} - 1.56 \times \frac{93}{12}$ or $22.75 - 1.56 \times 7.75$ [= 10.66]	M1
	b = awrt 1.6 or $a = awrt 11$ $p = 10.7 + 1.56x$	A1 A1
(4)		(4)
(u)	e.g. each extra employee costs the company (on average)[\$"]156" a year in paper	B1 (1)
(e)	[New $p = $] $0.8 \times "10.66" + \frac{"1.559"}{2} \times \frac{93}{12} [=14.573]$	M1
	[compared with $\overline{p} = 22.75$] so percentage saving is $\frac{22.75 - 14.573}{22.75} [\times 100]$	M1
	= 35.94 awrt <u>36[%]</u>	A1 (3)
(a)	Notes B1 for either correct expression [don't need = 231.25]	[12]
(a) (b)	1st M1 for attempt at correct expression for S_{pp} Allow one transcription error e.g. 662	0.72 May be
	seen in part (a)	0.72 May 00
	If no correct expression seen allow S_{pp} = awrt 392 or correctly placed in formula	a for <i>r</i>
	2^{nd} M1 for a correct expression for r , ft their S_{pp}	
	A1 for awrt 0.959	
(c)		
(d)	B1 for a suitable contextual comment that mentions their value of b Allow multiples eg every extra 100 employees costs the company "\$15600". Condone missing \$ sign or use of £. Do not allow "\$1.56" for 1 person unless indicates in 100's	
(e)	1^{st} M1 for a correct expression for average value of p using new model [ft their a and b]	
	2^{nd} M1 for correct percentage saving calculation using 22.75 (e.g. $\frac{14.573}{22.75} [\times 100]$) A	llow use of
	"10.7"+1.56"× $\frac{93}{12}$ [≈ 22.79] for 22.75 May be implied by correct answer.	
	A1 for awrt 36 SC use of 93 throughout part (e) rather than 7.75 leading to awrt 48 or 0.48 (they will negression line from part(c) to calculate the original value) gains M0M1A0 SC use of 93 in part(c) Answer of 36% gains M1M1A1, 64% or 0.64 gains M1M1A0.	need to use the

Question Number	Scheme	Mar	ks
3. (a)	[Median =] <u>53</u>	B1	
			(1)
(b)	$Q_1 = 45$ $Q_3 = 61$	M1	
	$[IQR =] 61 - 45 = \underline{16} (*)$	A1cso	
			(2)
(c)	$Q_1 - 1.5 \times (IQR) = 45 - 1.5 \times 16 = 21$ or $Q_3 + 1.5 \times (IQR) = 61 + 1.5 \times 16 = 85$	M1	
	Outliers are < 21 or > 85	A1ft	
	So there are three outliers at 13, 87 and 88	A1	
(4)		N/1	(3)
(d)	× :	M1 A1ft	
		AIII	
	10 20 30 40 50 60 70 80 90	A1	
	Age (males)		(4)
(e)	e.g. the females are generally older than the men as median is higher $(67 > 53)$	B1	
			(1)
(f)(i)	No change to box plot means one in each section so granddaughter [34~56]	B1	
(ii)	Eldest daughter in range [67~72] or Anja's age [72~93] Singa Anja 23 years older then aldest daughter Anja in range [00, 03]	M1	
	Since Anja 23 years older than eldest daughter Anja in range [90~93]	A1	(3)
	Notes		(3) [14]
(a)	B1 for 53		<u> </u>
(b)	M1 for an attempt at both and at least one correct. No need to be labelled.		
	A1cso for both correct quartiles seen and 61 – 45 leading to 16		
(c)		or 21	
	1st A1ft for both outlier limits correct or correct ft using their quartiles		
(4)	2 nd A1 for identifying the three outliers at 13, 87, 88 (dep on seeing both correct limits))	
(d)	·	`	
	1st A1ft for Q_1, Q_2 and Q_3 as a correctly drawn box (ft their values for Q_1, Q_2 and Q_3		
	2 nd A1 for upper whisker ending at 76 (or 85) and lower whisker ending at 27 (or 21) Must be correctly paired.	NB	
	3 rd A1 for the 3 outliers correctly shown (accuracy - half a small square throughout)		
	SC fully correct but with both whiskers correct on each side. M0A1A0A1		
(e)	•	stic. Must	
	include the figures compared. eg Females older than men and comparison of median, upper quartile or lower quarti	le allow	
	Q_1,Q_2 and Q_3 with their figures which must agree with the statement.		
	eg Males ages more spread out than female and comparison of ranges with males = 7	5 and	
	females = 73		
	eg Females older than males since Males are symmetrical [Q3 – Q2 : Q2 – Q1] 8 : 8	Femal	e
	are negative skew 5 : 11 NB use of mean/ IQR/ minimum/ maximum is B0. Ignore incorrect comments.		
(f)(i)	B1 for deducing granddaughter is at or below lower quartile but not below 34		
	Allow any reasonable adjustment for her mother's age, $\{34 \text{ to } x\}$ where $35 \square x \square 56$		
(ii)	M1 Suitable range for eldest daughter or Anja above upper quartile. Ignore any incorrect May be implied by a correct range.	t upper li	mit.
	A1 for a range of [90~93] for Anja's age		
	711 for a range of [70-73] for ranga's age		

Question Number	Scheme	Marks	
4. (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1	
	$\frac{1}{3} \qquad \text{Yellow} \qquad \frac{\frac{4}{5}}{\frac{1}{8}} \qquad \text{Red}$ $\frac{1}{\frac{1}{8}} \qquad \text{Yellow}$ $\frac{1}{\frac{1}{4}} \qquad \text{Yellow}$	B1	
(b)	3 5 8 3 5 8 3 5 8	M1 A1ft	
	$=\frac{1}{120}(2+4+6)$ or $(0.0166+0.033+0.05) = \frac{12}{120}$ or $\frac{1}{\underline{10}}$ (*)	A1*cso	
(c)	$[P(RYY \mid RYY \text{ or } YRY \text{ or } YYR) =] \frac{\frac{2}{3} \times \frac{1}{5} \times \frac{1}{8}}{\frac{1}{10}}$	(3) M1	
	$=\frac{1}{\underline{6}}$	A1 (2)	
(d)	x 0 1 2 3 P(X = x) $\frac{64}{120}$ or $\frac{8}{15}$ $\frac{42}{120}$ or $\frac{7}{20}$ $\left[\frac{1}{10}\right]$ $\frac{2}{120}$ or $\frac{1}{60}$	B1 M1 A1	
(e)	$[E(X) =] \frac{1}{120} (0 + "42" + "2 \times 12" + "3 \times 2")$	(3) M1	
	$=\frac{72}{120}$ or 0.6	A1 (2)	
	Notes		
(a)			
(b)	1 st M1 for at least one correct product of 3 probabilities (ft their tree diagram) 1 st A1ft for all 3 products of 3 probabilities added (no extras) (ft their tree diag.) 2 nd A1*cso for fully correct solution with no incorrect statements seen		
(c)	M1 for a ratio of probabilities with denominator of 0.1 and numerator $\frac{1}{60}$ oe or the product of 3 probabilities seen from their tree diagram representing P(RYY) provided num < 0.1		
	A1 for $\frac{1}{6}$ or exact equivalent		
(d)	6		
(e)	M1 for attempt at a correct expression (at least 2 correct ft part(d) non-zero products) A1 for 0.6 or any exact equivalent		

Question Number	Scheme	Marks
5. (a)	[By symmetry $E(Y)$] = $\underline{0}$	B1
(b)	$q+r+u=\frac{19}{30}$	(1) M1
	$2(q+r)+u=1 [\text{and attempt to solve e.g. } q+r=\dots]$ $u=\frac{8}{30}=\frac{4}{\underline{15}} (*)$	
(c)	$E(Y^{2}) = (-9)^{2} \times q + (-5)^{2} \times r + 5^{2} \times r + 9^{2}q \text{ or } 162q + 50r$ $Var(Y) = 37 = E(Y^{2}) - "0"^{2} \implies 37 = 162q + 50r \text{ oe}$	(3) M1 dM1
	Solving with $q + r = \frac{11}{30}$ oe e.g. $(162 - 50)q = 37 - \frac{55}{3}$ or	M1
	$q = \frac{1}{\underline{6}} \text{ and } r = \frac{1}{\underline{5}}$	A1
		(4)
(d)	$Y = 0 \Rightarrow D = 12$, $D = \sqrt{12^2 + Y^2}$; $Y = \pm 5 \Rightarrow D = 13$ or $Y = \pm 9 \Rightarrow D = 15$	B1, M1;A1
	d 12 13 15	M1A1ftA1ft
	$P(D=d)$ $\frac{4}{15}$ $\frac{6}{15}$ or $\frac{2}{5}$ $\frac{5}{15}$ or $\frac{1}{3}$	WITT VIIIZ VIII
		(6) [14]
(a)	Notes B1 for 0	
(b)		
	2^{nd} M1 for a second equation clearly based on sum of probs = 1 and an attempt to solv equations A1* cso correct value for u found with no incorrect working	ve these 2
(c)	1^{st} M1 for an attempt at E(Y^2) with at least 3 correct products seen. The negative number need to be in brackets	ers do not
	2^{nd} dM1 for attempt at correct equation in q and r using $\text{Var}(Y)$ [ft their $\text{E}(Y)$ and $\text{E}(Y^2)$ missing subtraction of 0^2 if 0 in part(a)] Condone
	3^{rd} M1 using $q + r = 11/30$ (awrt 0.37) to attempt to solve two linear equations in q are equation in one variable. May be implied by correct answers.	nd r leading to
	A1 for $q = \frac{1}{6}$ and $r = \frac{1}{5}$ or exact equivalents	
(d)	B1 for $D = 12$ 1st M1 for use of Pythagoras to work out $D = 13$ or 15 1st A1 for $D = 13$ and 15 2nd M1 for a correct value of D and an associated probability. Allow two occurrences (for 15 and 13) which add to the appropriate probability. 2nd A1ft for two correct values of D and associated probs ft their +ve q and r if $q + r = \frac{11}{30}$ Allow two occurrences (for 15 and 13) which add to the appropriate probability.	
	3^{rd} A1ft for a fully correct probability distribution ft their +ve q and r if $q + r = \frac{11}{30}$	

Question Number	Scheme	Mark	KS
6. (a)	$H \sim N(25.1, 5.5^2)$		
	$P(H > 30.8) = P\left(Z > \frac{30.8 - 25.1}{5.5}\right) \text{ or } P(Z > 1.03636)$	M1	
	= 1 - 0.8508 = 0.1492 or better (calc: 0.1500)	M1 A1cso	
	25.1		(3)
(b)	[P(H < y) = 0.05 implies] $\frac{y - 25.1}{5.5} = -1.6449$	M1B1	
	y = 16.053 so range is awrt 16.1 ~ 30.8	A1	(2)
(c)(i)	P(H < d) = 0.05 + 0.2 + 0.3 [= 0.55]	M1	(3)
	$\frac{d-25.1}{5.5} = 0.13 \text{ (Calc } 0.12566)$	M1	
	$d = 0.13 \times 5.5 + 25.1 = 25.815 $ (25.791 calc)	A1cso	(3)
(ii)	P(H < m) = 0.05 + 0.2 = 0.25	M1	. ,
	$\frac{m-25.1}{5.5} = -0.67 \text{(Calc 0.674489)}$	M1M1	
	$m = \text{awrt } \underline{21.4}$	A1	(4)
(d)	Height = $2 \times "m" + 3 \times 25.8 + 3 \times 30.8 [+8]$	M1	(4)
	= 220.6 awrt <u>221</u> (cm)	A1	
		[15]	(2)
	Notes	[13]	
(a)	1 st M1 for standardising 30.8 with 25.1 and 5.5 (allow \pm) Allow use of $z = 1.04$		
	$2^{\text{nd}} \text{ M1 for } 1 - p \text{ (where } 0.84$		
(1)	A1cso for an answer of 0.1492 or better(calc: 0.1500) with evidence of both M's s		
(b)	M1 for standardising their letter y with 25.1 and 5.5 and setting equal to z value $1 < z $ B1 for use of $z = \pm 1.6449$ or better (calc 1.6448536) with the correct standardisation		
	A1 for awrt 16.1 (ISW)(calc 16.053305) or range [16.1, 30.8](Allow 30.8 – 16.1 = 1		
Ans only	[awrt 16.05 scores 3/3 16.1 scores M1B0A1 unless 1.6449 or better is seen]	,[5])	
(c)(i)	1 st M1 for a correct method to calculate $P(H < d)$ implied by $z = awrt 0.13$ Allow $0.05 + awrt 0.200 + awrt 0.300[=0.5505]$		
	2^{nd} M1 for a correct standardisation = z where 0.125 , $ z $, 0.13		
	A1cso both method marks awarded, no errors seen and awrt 25.82 or awrt 25.79 or $d = \text{awrt } 0.13 \times 5.5 + 25.1 = \text{awrt } 25.8$		
ALT	Verification 2 nd M1 allow $\frac{25.8 - 25.1}{5.5} = 0.127$ or 0.13		
	A1 for 0.55 and 0.5517 (calc 0.5506 or better) seen		
(ii)	1st M1 correct method for $P(H < m)$ Allow 0.05 + awrt 0.200 implied by $ z = [0.67 - 0.27]$	-	
	2^{nd} M1 for standardising m with 25.1 and 5.5 and setting equal to z value (0.65 \square $ z $ \square (3 $^{\text{rd}}$ M1 for standardising m with 25.1 and 5.5 and setting equal to awrt -0.67 oe).09)	
	A1 for $m = \text{awrt } 21.4$ (use of $z = 0.67$ gives 21.415 and $z = 0.68$ gives 21.36)		
	No need for 3 rd M1 to be awarded		
(1)	Answer only 21.4 gets M1M1M0A1. 21.39 gets 4/4	•	
(d)	M1 for $2 \times "m" + 3 \times 25.8 + 3 \times 30.8$ [+ n] where n is an integer \square 0 Allow m or ft the A1 for awrt 221 (cm)	eir m	
	111 101 unit 221 (ciii)		

Question Number	Scheme	Marks
ALT 1 (c)(i)	e.g. $P(H > 25.8 \mid "16.1" < H < 30.8)$ or $\frac{P(25.8 < H < 30.8)}{1 - (0.15 + 0.05)}$	M1
	$= \frac{0.8508 - 0.5517}{0.8} \text{ (tables) or } \frac{0.299345}{0.8} \text{ (calc) } \approx \frac{3}{8}$	M1 A1cso
		(3)
	Notes	
(c)(i)	1 st M1 for a correct conditional probability statement ft their answer to (b) i.e. th	eir y
	2^{nd} M1 for a ratio of probs of the form $\frac{q}{0.8}$ where $q = 0.3$ to 1sf	
ı	A1 for probability of approx $\frac{3}{8}$	

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom